Lesson 5.1.1

5-8.

- a: The inputs and outputs are switched. **b:** See graph at right. **c:** y = 2(x + 3)**d:** Yes, y = x. 5-9. **a:** 9 **b:** x = 4**c:** $x \approx 1.89$ 5-10. Answers will vary, but it should have an "L" shape to it. In the middle there would probably not be any armrests to cut through.
- **b:** $x = \frac{8}{3}$ **c:** $x \approx 3.17$ 5-11. a: no solution **d**: x = 2**e:** $x = \frac{13}{3}$
- **5-12. a:** $T(x) = 3(2)^x$

b: $C(x) = 3(2)^{x} + 10$

- **c:** The graph for Clifton is the same as the graph for Tasha shifted up 10 units.
- 5-13. See graph at right. 6 sq. units
- The multiplier 1.083 represents a growth rate of 8.3%; for example, the 5-14. average cost of a ticket will go up 8.3% a year, where t is the number of years.

 $\frac{11}{x}$ 6

-6

Lesson 5.1.2 Day 1

- **5-25.** See graph at right.
- **5-26.** $\mathbf{a}: f^{-1}(x) = \frac{1}{3}(x+8)$ $\mathbf{b}: f^{-1}(x) = 2(x-6)$ $\mathbf{c}: f^{-1}(x) = 2x-6$
- **5-27.** Not necessarily if the rectangle's sides are not parallel or perpendicular to the axis of rotation, or the rectangle is not touching the line.
- **5-28. a:** $a = 3, b = \pm 5$ **b:** a = 2, b = 3
- **5-29. a:** $L(x) = x^2 1$; R(x) = 3(x + 2)
 - **b:** 30
 - **c:** Order does matter. R(3) = 15 and L(15) = 224, so an input of 3 in the changed order did not result in an output of 30.
- **5-30.** $(x+2)^2 + (y-3)^2 = 4r^2$
- **5-31.** $y \le -\frac{3}{4}x + 3$, $y \ge -\frac{3}{4}x 3$, $x \le 3$, $x \ge -3$

Lesson 5.1.2 Day 2

- **5-32.** $y = \frac{x}{5} + 2$ See graph at right.
- **5-33.** It does not matter which graph is labeled as the function or the inverse; $h^{-1}(x)$ is the inverse of h(x), and h(x) is the inverse of $h^{-1}(x)$.
- **5-34.** See graph at right. For f(x), domain: $-2 \le x \le 5$, range: $-3 \le y \le 3$; For $f^{-1}(x)$, domain: $-3 \le x \le 3$, range: $-2 \le y \le 5$. The domain and range are switched.
- **5-35.** One way would be to sweep a rectangle only about 45° rather than to revolve it completely. Then the piece will only be a wedge.

- **5-36.** a: normalcdf(70, 79, 74, 5) ≈ 0.629, About 63% would be considered average.
 b: normalcdf(-10^99, 66, 74, 5) ≈ 0.055, About 5 to 6% of them would be in excellent shape.
 - **c:** normalcdf(-10^{99} , 66, 70, 5) 0.0548 from part (b) ≈ 0.157 ; There would be a nearly 16% increase in women her age who are classified as being in excellent shape.
- 5-37. a: horizontal shift right if t > 0, horizontal shift left if t < 0
 b: vertical stretch for |t| > 1, vertical compression for |t| < 1, reflection if t < 0.
- **5-38.** a: $\sqrt{-3} \cdot \sqrt{-3} = i\sqrt{3} \cdot i\sqrt{3} = i^2\sqrt{9} = -3$

b: She multiplied $\sqrt{-3} \cdot \sqrt{-3}$ to get $\sqrt{9} = 3$.

- c: $\sqrt{-3}$ is undefined in relation to real numbers, and is only defined as the imaginary number $i\sqrt{3}$, so it must be written in its imaginary form before operations such as addition or multiplication can be performed.
- **d:** *a* and *b* must be non-negative real numbers.

Lesson 5.1.3

5-45. Trejo is correct, as long as the domains are restricted appropriately.

- **5-46.** a: 121 b: 17 **5-47.** a: 3 b: 5 c: 4 d: $\frac{1}{2}$ e: $\frac{1}{4}$ f: $\frac{1}{6}$ g: $\frac{1}{2}$ h: 4 i: a
- **5-48. a:** Square 9 and subtract 5; Caleb dropped in 76. **b:** $k^{-1}(x) = x^2 - 5$
- **5-49.** Remembering that lower times are better, for David: normalcdf(122, 10^99, 149, 13.6) ≈ 0.976; for Regina: normalcdf(130, 10^99, 145, 8.2) ≈ 0.966. David is relatively faster, but the difference is very small!
- **5-50.** One possible solution method is 5x + 8x + 56 = 160. x = 8. Or, the two missing sides must have total length 104 cm. Since the ratio is 5:8 with no broken rods, there must be some multiple of 5 + 8 = 13 number of rods that makes up the two missing sides. Since $13 \cdot 8 = 104$, the rods could be 8 cm long. The three sides of the tail fin are 56, 40, and 64 cm. If the rods were, say 4 inches or 2 inches long, the length of the sides would still be the same.

5-51.

Lesson 5.2.1

- **5-56.** Domain: x > 0; Range: $-\infty < y < \infty$; *x*-intercept: (1, 0); no *y*-intercept; asymptote at x = 0, increasing, continuous function
- **5-57. a:** $b = 3, 3^5 = 243$ **b:** $b = 10, 10^{-3} = 0.001$
- **5-58.** Yes, it is possible. Make the slice at the apex so the cross-section is a point or slice at an angle.
- **5-59.** See solid curve on graph at right.

a: domain: all real numbers; range: y > -3

b: no

- **c:** $(0, -2), (\approx 1.585, 0)$
- **d:** See dashed curve on graph at right. domain: x > -3; range: all real numbers; $(0, \approx 1.585), (-2, 0)$

- **5-60.** The yield of the Amazing Apples tree was $\frac{940-840}{120} = 0.83$ standard deviations above the mean, while the Amazing Mango tree was only $\frac{400-350}{190} = 0.26$ standard deviations above the mean. Put another way, the Amazing Apple tree was at normalcdf(-10^99, 940, 840, 120) \approx 79.8 percentile, while the Amazing Mango tree was at normalcdf(-10^99, 400, 350, 190) \approx 60.4 percentile. The Amazing Apples fertilizer appears to be more amazing based on this one sample.
- **5-61.** a: $(x + 2)^2 + (y 13)^2 = 144$ b: $(x + 1)^2 + (y + 4)^2 = 1$ c: $(x - 3)^2 + (y + 8)^2 = 16$
- **5-62.** a: $g(f(x)) = 3((x^2 1) + 2)$ or $3x^2 + 3$ b: $f(g(x)) = (3(x + 2))^2 - 1$ or $9x^2 + 36x + 35$

Lesson 5.2.2

- **5-68.** $x = 2^{y}$; The two equations do not look the same, but they are equivalent. They have the same graph or give the same table, or one is just a rewritten equation of the other.
- **5-69. a**: $x = \log_5(y)$ **b**: $x = 7^y$ **c**: $x = \log_8(y)$ **d**: $K = \log_A(C)$ **e**: $C = A^K$ **f**: $K = \left(\frac{1}{2}\right)^N$
- 5-70. a: See graph and tables at right. $x \neq -2$ for the original function, which means $y \neq -2$ for the inverse function. $x \neq -1$ for the inverse function (because $y \neq 1$ in the original function).

b:
$$f^{-1}(x) = \frac{-2x-2}{x-1}$$
 or $f^{-1}(x) = \frac{-4}{x-1} - 2$

5-71. a: $x \ge -5$

b: $e^{-1}(x) = (x-1)^2 - 5; x \ge 1$

c: $e^{-1}(e(-4)) = -4$ because one machine undoes the other.

d: They would be reflections of each other across the line y = x.

e: See graph at right.

5-72. The parent graph is $y = x^2$. The graph of y = f(x) is reflected over the *x*-axis to open downward, stretched vertically by a factor of 2, and then translated 1 unit right and 3 units up to have a vertex at (1, 3).

Lesson 5.2.3

5-78. $y = \log_7(x)$

- **5-79.** 11. The problem is asking for the exponent for base 6 that will give 6 to the 11th power. That is similar to Jonique's question because the answer is stated in the question.
- 5-80. The first would produce two separate circles as the cross-section. The second would produce a ring.

5-82. a: normalcdf(-10^99, 59, 63.8, 2.7) ≈ 0.0377; 3.77%

b: (0.0377)(324)(half girls) = 6 girls

- **c:** normalcdf(72, 10^99, 63.8, 2.7) \approx 0.00119. (0.00119)(324)(half) \approx 0.19 girls; We would not expect to see any girls over 6 ft tall. This assumes that the senior girls at North City High are a representative sample of women in the United States.
- d: It is likely that there will be girls over 6 ft tall, and the senior girls are probably not a representative sample of women in the U.S.
- **5-83.** a: $x \approx 6.24$ **b:** *x* = 5
- **a:** -102 **b:** -7 **c:** $x = \pm \sqrt{\frac{c+4}{-2}}, c \le -4$ **d:** $x = \frac{c-3}{5}$ **e:** $g^{-1}(x) = \frac{x-3}{5}$ **5-84.** a: -102

5-89.	a: <i>x</i> = 25	b: <i>x</i> = 2	c: <i>x</i> = 343
	d: <i>x</i> = $\sqrt{3}$	e: <i>x</i> = 3	f: <i>x</i> = 4
5-90.	See graph at right.		
5-91.	No; $\log_3 2 < 1$ and $\log_2 3 > 1$		
5-92.	a: 12 because $12^{0.926628408}$ is very close to 10.		
	b: Answers vary, but 12 fingers make sense for base 12.		
5-93.	A bit like a Bundt cake form.		

- **5-94.** Sample answer: Yes, because if the numbers are the same, the exponent you have used to get them is the same, given the same base.
- **5-95.** a: Domain of f(x) is $x \le 7$ and range is $f(x) \ge -6$. For $f^{-1}(x)$, switch them: domain of $f^{-1}(x)$ is restricted to $x \ge -6$ and range is $f(x) \le 7$. b: $f^{-1}(f(a)) = a$