Lesson 5.1.1

5-8. a: The inputs and outputs are switched.
b: See graph at right.
c: $y=2(x+3)$
d: Yes, $y=x$.

5-9. a: 9
b: $x=4$
c: $x \approx 1.89$

5-10. Answers will vary, but it should have an "L" shape to it. In the middle there would probably not be any armrests to cut through.

5-11. a: no solution
b: $x=\frac{8}{3}$
c: $x \approx 3.17$
d: $x=2$
e: $x=\frac{13}{3}$
5-12. a: $T(x)=3(2)^{x}$
b: $C(x)=3(2)^{x}+10$
c: The graph for Clifton is the same as the graph for Tasha shifted up 10 units.

5-13. See graph at right. 6 sq. units

5-14. The multiplier 1.083 represents a growth rate of 8.3%; for example, the average cost of a ticket will go up 8.3% a year, where t is the number of years.

Lesson 5.1.2 Day 1

5-25. See graph at right.
5-26. $\mathbf{a}: f^{-1}(x)=\frac{1}{3}(x+8)$
b: $f^{-1}(x)=2(x-6)$
c: $f^{-1}(x)=2 x-6$

5-27. Not necessarily if the rectangle's sides are not parallel or perpendicular to the axis of rotation, or the rectangle is not touching the line.

5-28. a: $a=3, b= \pm 5$
b: $a=2, b=3$
5-29. a: $L(x)=x^{2}-1 ; R(x)=3(x+2)$
b: 30
c: Order does matter. $R(3)=15$ and $L(15)=224$, so an input of 3 in the changed order did not result in an output of 30 .

5-30. $(x+2)^{2}+(y-3)^{2}=4 r^{2}$
5-31. $y \leq-\frac{3}{4} x+3, y \geq-\frac{3}{4} x-3, x \leq 3, x \geq-3$

Lesson 5.1.2 Day 2

5-32. $y=\frac{x}{5}+2$
See graph at right.
5-33. It does not matter which graph is labeled as the function or the inverse; $h^{-1}(x)$ is the inverse of $h(x)$, and $h(x)$ is the inverse of $h^{-1}(x)$.

5-34. See graph at right. For $f(x)$, domain: $-2 \leq x \leq 5$, range: $-3 \leq y \leq 3$; For $f^{-1}(x)$, domain: $-3 \leq x \leq 3$, range: $-2 \leq y \leq 5$. The domain and range are switched.

5-35. One way would be to sweep a rectangle only about 45° rather than to revolve it completely. Then the piece will only be a wedge.

5-36. a: $\operatorname{normalcdf}(70,79,74,5) \approx 0.629$, About 63% would be considered average.
b: normalcdf $\left(-10^{\wedge} 99,66,74,5\right) \approx 0.055$, About 5 to 6% of them would be in excellent shape.
c: normalcdf $\left(-10^{\wedge} 99,66,70,5\right)-0.0548$ from part $(b) \approx 0.157$; There would be a nearly 16% increase in women her age who are classified as being in excellent shape.

5-37. a: horizontal shift right if $t>0$, horizontal shift left if $t<0$
b: vertical stretch for $|t|>1$, vertical compression for $|t|<1$, reflection if $t<0$.
5-38. a: $\sqrt{-3} \cdot \sqrt{-3}=i \sqrt{3} \cdot i \sqrt{3}=i^{2} \sqrt{9}=-3$
b: She multiplied $\sqrt{-3} \cdot \sqrt{-3}$ to get $\sqrt{9}=3$.
c: $\sqrt{-3}$ is undefined in relation to real numbers, and is only defined as the imaginary number $i \sqrt{3}$, so it must be written in its imaginary form before operations such as addition or multiplication can be performed.
d: a and b must be non-negative real numbers.

Lesson 5.1.3

5-45. Trejo is correct, as long as the domains are restricted appropriately.
5-46. a: 121 b: 17

5-47. a: 3
b: 5
c: 4
d: $\frac{1}{2}$
e: $\frac{1}{4}$
f: $\frac{1}{6}$
g: $\frac{1}{2}$
h: 4
i: a
5-48. a: Square 9 and subtract 5; Caleb dropped in 76 .
b: $k^{-1}(x)=x^{2}-5$
5-49. Remembering that lower times are better, for David: normalcdf($\left.122,10^{\wedge} 99,149,13.6\right)$ ≈ 0.976; for Regina: normalcdf $\left(130,10^{\wedge} 99,145,8.2\right) \approx 0.966$. David is relatively faster, but the difference is very small!

5-50. One possible solution method is $5 x+8 x+56=160 . x=8$. Or, the two missing sides must have total length 104 cm . Since the ratio is $5: 8$ with no broken rods, there must be some multiple of $5+8=13$ number of rods that makes up the two missing sides. Since $13 \cdot 8=104$, the rods could be 8 cm long. The three sides of the tail fin are 56,40 , and 64 cm . If the rods were, say 4 inches or 2 inches long, the length of the sides would still be the same.

5-51.

Lesson 5.2.1

5-56. Domain: $x>0$; Range: $-\infty<y<\infty$; x-intercept: $(1,0)$; no y-intercept; asymptote at $x=0$, increasing, continuous function

5-57. a: $b=3,3^{5}=243 \quad$ b: $b=10,10^{-3}=0.001$
5-58. Yes, it is possible. Make the slice at the apex so the cross-section is a point or slice at an angle.

5-59. See solid curve on graph at right.
a: domain: all real numbers; range: $y>-3$
b: no
c: $(0,-2),(\approx 1.585,0)$
d: See dashed curve on graph at right. domain: $x>-3$;
 range: all real numbers; $(0, \approx 1.585),(-2,0)$

5-60. The yield of the Amazing Apples tree was $\frac{940-840}{120}=0.83$ standard deviations above the mean, while the Amazing Mango tree was only $\frac{400-350}{190}=0.26$ standard deviations above the mean. Put another way, the Amazing Apple tree was at normalcdf($-10^{\wedge} 99,940,840$, $120) \approx 79.8$ percentile, while the Amazing Mango tree was at normalcdf($-10^{\wedge} 99,400$, $350,190) \approx 60.4$ percentile. The Amazing Apples fertilizer appears to be more amazing based on this one sample.

5-61. a: $(x+2)^{2}+(y-13)^{2}=144$
b: $(x+1)^{2}+(y+4)^{2}=1$
c: $(x-3)^{2}+(y+8)^{2}=16$
5-62. a: $g(f(x))=3\left(\left(x^{2}-1\right)+2\right)$ or $3 x^{2}+3$
b: $f(g(x))=(3(x+2))^{2}-1$ or $9 x^{2}+36 x+35$

Lesson 5.2.2

5-68. $x=2^{y}$; The two equations do not look the same, but they are equivalent. They have the same graph or give the same table, or one is just a rewritten equation of the other.

5-69. a: $x=\log _{5}(y)$
b: $x=7^{y}$
c: $x=\log _{8}(y)$
d: $K=\log _{A}(C)$
e: $C=A^{K}$
f: $K=\left(\frac{1}{2}\right)^{N}$
5-70. a: See graph and tables at right. $x \neq-2$ for the original function, which means $y \neq-2$ for the inverse function. $x \neq-1$ for the inverse function (because $y \neq 1$ in the original function).
b: $f^{-1}(x)=\frac{-2 x-2}{x-1}$ or $f^{-1}(x)=\frac{-4}{x-1}-2$

5-71. a: $x \geq-5$
b: $e^{-1}(x)=(x-1)^{2}-5 ; x \geq 1$
c: $e^{-1}(e(-4))=-4$ because one machine undoes the other.
d: They would be reflections of each other across the line $y=x$.
e: See graph at right.
5-72. The parent graph is $y=x^{2}$. The graph of $y=f(x)$ is reflected over the x-axis to open downward, stretched vertically by a factor of 2 , and then translated 1 unit right and 3 units up to
 have a vertex at $(1,3)$.

5-73. $\frac{6}{7}$
5-74. $x=-7, y=11$

Lesson 5.2.3

5-78. $y=\log _{7}(x)$
5-79. 11. The problem is asking for the exponent for base 6 that will give 6 to the $11^{\text {th }}$ power. That is similar to Jonique's question because the answer is stated in the question.

5-80. The first would produce two separate circles as the cross-section. The second would produce a ring.

5-81. a: hyperbola with parent graph $y=\frac{1}{x}$, translated right 3 units and up 4 units
b: square root graph with parent graph $y=\sqrt{x}$, stretched vertically by a factor of 3
c: $y=2 x^{2}-3$
d: $y=-(x-1)^{3}+4$

5-82. a: $\operatorname{normalcdf}\left(-10^{\wedge} 99,59,63.8,2.7\right) \approx 0.0377 ; 3.77 \%$
b: (0.0377)(324)(half girls) $=6$ girls
c: $\operatorname{normalcdf}\left(72,10^{\wedge 99}, 63.8,2.7\right) \approx 0.00119$. (0.00119)(324)(half) ≈ 0.19 girls; We would not expect to see any girls over 6 ft tall. This assumes that the senior girls at North City High are a representative sample of women in the United States.
d: It is likely that there will be girls over 6 ft tall, and the senior girls are probably not a representative sample of women in the U.S.

5-83.
a: $x \approx 6.24$
b: $x=5$

5-84.
a: -102
b: -7
c: $x= \pm \sqrt{\frac{c+4}{-2}}, c \leq-4$
$\mathrm{d}: x=\frac{c-3}{5}$
e: $g^{-1}(x)=\frac{x-3}{5}$

Lesson 5.2.4

5-89. a: $x=25$
b: $x=2$
c: $x=343$
d: $x=\sqrt{3}$
e: $x=3$
f: $x=4$

5-90. See graph at right.
5-91. No; $\log _{3} 2<1$ and $\log _{2} 3>1$
5-92. a: 12 because $12^{0.926628408}$ is very close to 10 .

b: Answers vary, but 12 fingers make sense for base 12.
5-93. A bit like a Bundt cake form.
5-94. Sample answer: Yes, because if the numbers are the same, the exponent you have used to get them is the same, given the same base.

5-95. a: Domain of $f(x)$ is $x \leq 7$ and range is $f(x) \geq-6$.
For $f^{-1}(x)$, switch them: domain of $f^{-1}(x)$ is restricted to $x \geq-6$ and range is $f(x) \leq 7$.
b: $f^{-1}(f(a))=a$

