Lesson 1.1.1

- **1-4. a**: $\frac{1}{2}$ **b**: 3
- **1-5. a:** 16 **b:** 9 **c:** 478.38
- **1-6. a:** h(x) then g(x)

b: Yes, it is possible. Since the output of g(x) is positive, the only way to get a final negative output is if g(x) goes first. This gives g(6) = 1 and h(1) = -5.

- **1-9. a:** *x* = 13 **b:** *x* = 8
- **1-10. a:** $5m^2 + 9m 2$ **b:** $-x^2 + 4x + 12$ **c:** $25x^2 - 10xy + y^2$ **d:** $6x^2 - 15xy + 12x$

Lesson 1.1.2 Day 1

1-20. a: *y* depends on *x*; *x* is independent. Explanations vary.b: Temperature is dependent; time is independent.

1-21. a: (x-9)(x+8)c: $(x-4)^2$ b: 6x(x+8)d: (x+7)(x-7)

Lesson 1.1.2 Day 2

1-22.	Graph shown at right. curved; increasing; intercepts: $(0, -2)$ and $(4, 0)$; domain: $x \ge 0$; range: $y \ge -2$; endpoint: $(0, -2)$; continuous; function				
1-23.	a: $x = -1$	13 or 7	b: $x = -\frac{3}{2}$ or $\frac{7}{3}$	c: $x = 0$ or 3	-4
	d: $x = 0$	or 5	e: $x = 7$ or -5	f: $x = -\frac{1}{3}$ or -5	
1-24.	a: 2	b: -4	c: $\frac{1}{0}$ is undefined	d: Justifications vary.	
1-25.	a: 1		b: <i>x</i> = 12	c: 13	
	d: no rea	al solution	e: $x = \pm \sqrt{\frac{13}{2}} \approx \pm 2.55$	f: $x = \pm \sqrt{7} \approx \pm 2.65$	
1-26.	$f(x) = x^3$				

1-27. a: The amount of money you spend is proportional to the amount of gas you buy.
b: People grow a lot in their early years and then their growing slows down.
c: As time goes by, the ozone concentration goes down, although the effect is slowing.
d: As the number of students grows, more classrooms are used and each classroom holds 30 students.

e: Possible inputs: any non-negative integer; Possible outputs: any non-negative integer

1-28. a: $x \approx -7.37$ b: x = 2.8 c: x = 2 d: x = -3.25

уŧ

Lesson 1.1.3 Day 1

1-40. Sample graphs shown below.

1-41. There is an error in line 2. Both sides need to be multiplied by $x: 5 = x^2 - 4x, 0 = x^2 - 4x - 5 = (x - 5)(x + 1), x = -1, 5.$

30 *x*

Lesson 1.1.3 Day 2

1-42. See table and graph at right. Domain: $x \neq 0$, range: $y \neq 0$, asymptotes are the x- and y-axes, non-linear, two separate curves with reflection symmetry across y = xand y = -x, or 180° rotational symmetry.

1-43. a: See graph at right.

b: Yes, the pizza will never get below room temperature.

- **1-44. a:** x = 3 or -2**b**: x = 3 or -3
- **1-45.** Solve $x^2 + 2x + 1 = 1$; x = 0 or -2
- **1-46.** a: (0, 6) **b:** (0, 2) c: (0, 0)**d**: (0, −4) **e:** (0, 25) **f**: (0, 13)
- 1-47. Possible answers listed below. **a:** Factor and use the Zero Product Property (rewrite) x = -8 or 1 **b:** Take the square root (undo) x = -9 or 5
 - c: Quadratic Formula $x = \frac{1\pm\sqrt{141}}{10} \approx -1.09$ or 1.29
 - **d:** Quadratic Formula $x = -2 \pm \sqrt{3} \approx -3.73$ or -0.27
- 1-48. a: See answer graph at right.

b:
$$y = -\frac{1}{3}x + 1$$

Lesson 1.1.4

1-56.	a: 70	b: 2	c: 43
	d: undefined	e: $-\infty < x < \infty$	f: $x \ge 5$

- **g:** The square root of a negative number is undefined, whereas any real number can be squared.
- **1-57.** The functions in parts (a), (b), (d), (e), (h), (i), and (j) are polynomial functions. Part (c) has an exponential term. Part (f) is not a function. If part (g) is rewritten in standard form, it will have negative exponents.
- **1-58.** a: y = 3x + 24; Table and graph shown at right.
 - **b:** At 16 weeks. You can see this in the table and graph where y = 72. You can see this growth in the equation by substituting 72 for *y* and solving for *x*.
 - **c:** Possible inputs: all real numbers greater than and including 0 Possible outputs: all real numbers greater than and including 24

- **1-60.** See graph at right. Exponential function (increasing), horizontal asymptote y = 0, y-intercept (0, 1), D: all real numbers, R: y > 0, continuous function.
- **1-61.** a: D: x = -1, 1, 2; R: y = -2, 1, 2b: D: $-1 \le x < 1$; R: $-1 \le y < 2$ c: D: $x \ge -1$; R: $y \ge -1$ d: D: $-\infty < x < \infty$; R: $y \ge -2$
- **1-62.** $x = 70^{\circ}$; straight \angle s are supplementary and ext. \angle .

- **1-66.** (2, 1)
- **1-67.** a: 3 b: $\frac{y^2}{25x^{14}}$ c: 18x
- **1-68.** x = 2.5
- **1-69. a:** $\sqrt{34} \approx 5.83$ units **b:** $\frac{3}{5}$

1-70. a: Table and graph shown at right. y = 2x + 26b: 37 weeks after Carlo's birthday. In the table and the graph, the point (37, 100). Using the equation, the value of x for which 100 = 2x + 26.

1-71. y = 0

a: (-2, 0)	b: (-10, 0)	c: (0, 0)
d: $(\pm\sqrt{2} \approx \pm 1.41, 0)$	e: (5, 0)	f: $(\sqrt[3]{13} \approx 2.35, 0)$

1-72. a: $x = \frac{5(y-1)}{3}$ **b:** $x = \frac{-2y+6}{3}$ **c:** $x = \pm \sqrt{y}$ **d:** $x = \pm \sqrt{y+100}$

Lesson 1.2.2 Day 1

- **1-85.** l = 4w and l + w = 22 or w + 4w = 22; The length is 17.6 cm, and the width is 4.4 cm.
- **1-86.** $2x \frac{7}{6} = 3 3x$; $x = \frac{5}{6}$, $y = \frac{1}{2}$; $\left(\frac{5}{6}, \frac{1}{2}\right)$

Lesson 1.2.2 Day 2

c: y-intercept (0, 3) for both, x-intercept $(-\frac{1}{2}, 0)$ for part (a) and none for part (**d:** (0, 3) and (2, 7), solve $2x + 3 = x^2 + 3$ to get x = 0 or x = 2

1-93. They are similar by $AA \sim .$

a: $\frac{n}{m}$ **b:** $\frac{m}{x}$

Lesson 1.2.2 Day 3

- **1-94.** Mean: 52 g; sample standard deviation is $\sqrt{\frac{64+64+4+144+4}{5-1}} = \sqrt{70} \approx 8.4$ g
- **1-95. a**: x = -6 **b**: $x = \frac{38}{13} \approx 2.92$

1-96. a: $\frac{1}{12}$ b: $\sqrt{580} = 2\sqrt{145} \approx 24.08$ c: (-9, 1)

1-97. See graph shown at right. Parabola with vertex/minimum (-1, -8); increasing for x > -1; decreasing for x < -1; intercepts (-3, 0), (1, 0), and (0, -6). Line of symmetry at x = -1, domain: $-\infty < x < \infty$; range: $y \ge -8$

- **1-98.** a: D: $-3 \le x < 3$; R: y = -2, 1, 3b: D: x = 2; R: $-\infty < y < \infty$ c: D: $x \ge -2$; R: $-\infty < y < \infty$
- **1-99.** a: $\frac{1}{25}$ b: $\frac{x}{v^2}$ c: $\frac{1}{x^2v^2}$ d: $\frac{b^{10}}{a}$

1-100. The independent variable is the volume of water; the dependent variable is the height of the liquid. The graph is three line segments starting at the origin. C is the steepest, and B is the least steep.

d: $y = \frac{1}{12}x + \frac{7}{4}$

Volume of Water

Lesson 1.2.3

1-103. a: The five-number summary is (1, 19.5, 29, 40.5, 76) cups of coffee per hour.

b: The typical number of cups sold in an hour is 29 as determined by the median. Looking at the shape of the distribution, we see that the median is a satisfactory representation of the distribution. The distribution has a skew. There is a gap between 60 and 70 cups. The IQR is 21 cups. 76 cups of coffee in one hour is an apparent outlier.

 $\frac{y}{3}$

6

9

1-104. a: $x = \frac{-3 \pm \sqrt{21}}{2} \approx -3.79, 0.79$ b: $x = \frac{7 \pm \sqrt{193}}{6} \approx 3.48, -1.15$ **1-105.** Diagrams vary. See graph and table at right. y = 3x **1 2 3**

1-106. See graph at right.

a: See graph at right.
b: y = 4x - 15
c: (4, 1)

- **1-107.** a: D: all real numbers except $x \neq 0$; R: all real numbers except $y \neq 0$
 - **b:** D: $-5 \le x \le 6$; R: $-4 \le y \le 2$
 - **c:** D: all real numbers; $R: y \le 1$
- **1-108.** The negative coefficient causes parabolas to open downward, without changing the vertex. See graph at right.
- **1-109.** (1, 3) and (7, 81)

