Lesson 1.1.1

1-4. a: $\frac{1}{2}$ b: 3
1-5. a: 16
b: 9
c: 478.38

1-6. \quad a: $h(x)$ then $g(x)$
b: Yes, it is possible. Since the output of $g(x)$ is positive, the only way to get a final negative output is if $g(x)$ goes first. This gives $g(6)=1$ and $h(1)=-5$.

1-7.
a.

b.

c.

d.

1-8. a: not linear
b: x is squared
c: a parabola
d: D: All real numbers; R: $y \geq 0$

1-9.
a: $x=13$
b: $x=8$

1-10.
a: $5 m^{2}+9 m-2$
b: $-x^{2}+4 x+12$
c: $25 x^{2}-10 x y+y^{2}$
d: $6 x^{2}-15 x y+12 x$

Lesson 1.1.2 Day 1

1-15. a: More than one function is possible. See sample graph at right.
b: More than one function is possible. See sample graph at right.

1-16. Let y represent the amount of money (cents) in the piggy bank, and x represent the time (days). $y=2 x+10$;

x	0	1	2	3	4
y	10	12	14	16	18

1-17. a: 2
b: 10
c: 100
d: ≈ 142.86

1-18. a: $14,-4,3 x-1$
b: $f(x)=3 x-1$
1-19. a: $x=5,3$
b: $x=\frac{5 \pm \sqrt{73}}{4}$ or $x \approx 3.39,-0.89$
1-20. a: y depends on $x ; x$ is independent. Explanations vary.
b: Temperature is dependent; time is independent.
c:

1-21.
a: $(x-9)(x+8)$
b: $6 x(x+8)$
c: $(x-4)^{2}$
d: $(x+7)(x-7)$

Lesson 1.1.2 Day 2

1-22. Graph shown at right. curved; increasing; intercepts: $(0,-2)$ and $(4,0)$; domain: $x \geq 0$; range: $y \geq-2$; endpoint: $(0,-2)$; continuous; function

1-23.
a: $x=-13$ or 7
b: $x=-\frac{3}{2}$ or $\frac{7}{3}$
c: $x=0$ or 3
d: $x=0$ or 5
e: $x=7$ or -5
f: $x=-\frac{1}{3}$ or -5

1-24.
a: 2
b: -4
c: $\frac{1}{0}$ is undefined
d: Justifications vary.

1-25. a: 1
b: $x=12$
c: 13
d: no real solution
e: $x= \pm \sqrt{\frac{13}{2}} \approx \pm 2.55$ f: $x= \pm \sqrt{7} \approx \pm 2.65$
1-26. $f(x)=x^{3}$

1-27. a: The amount of money you spend is proportional to the amount of gas you buy.
b: People grow a lot in their early years and then their growing slows down.
c: As time goes by, the ozone concentration goes down, although the effect is slowing.
d: As the number of students grows, more classrooms are used and each classroom holds 30 students.
e: Possible inputs: any non-negative integer; Possible outputs: any non-negative integer
1-28. a: $x \approx-7.37$
b: $x=2.8$
c: $x=2$
d: $x=-3.25$

Lesson 1.1.3 Day 1

1-35. a: The numbers between -2 and 4 inclusive or $-2 \leq x \leq 4$.
b: The numbers between -1 and 3 inclusive or $-1 \leq y \leq 3$.
c: No. He is missing all the values between those numbers. The curve is continuous, so the description needs to include all real

d: Sample graph shown at right.
1-36. They are both wrong. The equation needs to be set equal to zero before the Zero Product Property can be applied. $2 x^{2}+5 x-3=4$ is equivalent to $(2 x+7)(x-1)=0 . x=1$ or $x=-\frac{7}{2}$

1-37.
a: $y=\frac{x-6}{3}$
b: $y=\frac{x+10}{5}$
c: $y= \pm \sqrt{x}$
d: $y= \pm \sqrt{\frac{x+4}{2}}$
e: $y= \pm \sqrt{x}+5$

1-38. a: -7
b: 3.5
c: The y - and x-intercepts.
1-39. $y=30-x$; Graph and table shown at right. Answers vary.

x	0	1	6	20
y	30	29	24	10

1-40. Sample graphs shown below.

1-41. There is an error in line 2 . Both sides need to be multiplied by $x: 5=x^{2}-4 x, 0=x^{2}-4 x-5=(x-5)(x+1), x=-1,5$.

Lesson 1.1.3 Day 2

1-42. See table and graph at right. Domain: $x \neq 0$, range: $y \neq 0$, asymptotes are the x - and y-axes, non-linear, two separate curves with reflection symmetry across $y=x$ and $y=-x$, or 180° rotational symmetry.

1-43. a: See graph at right.
b: Yes, the pizza will never get below room temperature.

Time

1-44. a: $x=3$ or -2
b: $x=3$ or -3

1-45. Solve $x^{2}+2 x+1=1 ; x=0$ or -2
1-46. a: $(0,6) \quad$ b: $(0,2) \quad$ c: $(0,0) \quad$ d: $(0,-4) \quad$ e: $(0,25) \quad$ f: $(0,13)$

1-47. Possible answers listed below.
a: Factor and use the Zero Product Property (rewrite) $x=-8$ or 1
b: Take the square root (undo) $x=-9$ or 5
c: Quadratic Formula $x=\frac{1 \pm \sqrt{101}}{10} \approx-1.09$ or 1.29
d: Quadratic Formula $x=-2 \pm \sqrt{3} \approx-3.73$ or -0.27
1-48. a: See answer graph at right.
b: $y=-\frac{1}{3} x+1$

Lesson 1.1.4

1-56. a: 70
b: 2
c: 43
d: undefined
e: $-\infty<x<\infty$
f: $x \geq 5$
g: The square root of a negative number is undefined, whereas any real number can be squared.

1-57. The functions in parts (a), (b), (d), (e), (h), (i), and (j) are polynomial functions. Part (c) has an exponential term. Part (f) is not a function. If part (g) is rewritten in standard form, it will have negative exponents.

1-58. a: $y=3 x+24$; Table and graph shown at right.
b: At 16 weeks. You can see this in the table and graph where $y=72$. You can see this growth in the equation by substituting 72 for y and solving for x.
c: Possible inputs: all real numbers greater than and including 0
Possible outputs: all real numbers greater than and including 24

x	y
0	24
1	27
2	30
3	33
4	36
5	39

1-59. The error is in line 3 . It should be: $0=5.4 x+23.7, x \approx-4.39$
1-60. See graph at right. Exponential function (increasing), horizontal asymptote $y=0, y$-intercept $(0,1)$, D: all real numbers, R: $y>0$, continuous function.

1-61. a: D: $x=-1,1,2 ; \mathrm{R}: y=-2,1,2$

b: D: $-1 \leq x<1 ; \mathrm{R}:-1 \leq y<2$
c: D: $x \geq-1$; R: $y \geq-1$
d: D: $-\infty<x<\infty$; R: $y \geq-2$
1-62. $x=70^{\circ}$; straight \angle s are supplementary and ext. \angle.

Lesson 1.2.1

1-66. $(2,1)$
1-67. a: 3
b: $\frac{y^{2}}{25 x^{14}}$
c: $18 x$

1-68. $x=2.5$
1-69. a: $\sqrt{34} \approx 5.83$ units b: $\frac{3}{5}$

1-70. a: Table and graph shown at right. $y=2 x+26$
b: 37 weeks after Carlo's birthday. In the table and the graph, the point $(37,100)$. Using the equation, the value of x for which $100=2 x+26$.

1-71. $y=0$

a: $(-2,0)$
b: $(-10,0)$
c: $(0,0)$
d: $(\pm \sqrt{2} \approx \pm 1.41,0)$
e: $(5,0)$
f: $(\sqrt[3]{13} \approx 2.35,0)$

1-72. a: $x=\frac{5(y-1)}{3}$
b: $x=\frac{-2 y+6}{3}$
c: $x= \pm \sqrt{y}$
d: $x= \pm \sqrt{y+100}$

Lesson 1.2.2 Day 1

1-80. a: $(-1,9)$ and $(5,21)$
b: $x^{2}+17$
c: $x^{2}-4 x-5$
1-81. a: $8.4-5.8=2.6 \mathrm{~cm}$
b: See boxplot at right.

1-82. a: 32
b: $x^{2} y^{2} \sqrt{x}$
c: $\frac{x^{2}}{y}$
1-83. See graph at right.
Domain: all real numbers
Range: all real numbers
1-84. a: D: $-2,-1,2 ; \mathrm{R}:-1,0,1$

b: D: $-1<x \leq 1$; R: $-1 \leq y<2$
c: D: $x>-1$; R: $y>-1$
d: D: $-\infty<x<\infty ; \mathrm{R}:-\infty<y<\infty$
1-85. $l=4 w$ and $l+w=22$ or $w+4 w=22$; The length is 17.6 cm , and the width is 4.4 cm .
1-86. $2 x-\frac{7}{6}=3-3 x ; x=\frac{5}{6}, y=\frac{1}{2} ;\left(\frac{5}{6}, \frac{1}{2}\right)$

Lesson 1.2.2 Day 2

1-87. a: $w=0$ or $w=-4 \quad$ b: $w=0$ or $w=\frac{2}{5} \quad$ c: $w=0$ or $w=6$
1-88. Mean: 7.6 g ; Sample standard deviation: $\sqrt{\frac{2.56+0.16+0.16+1.96+0.36}{5-1}}=\sqrt{1.3} \approx 1.14 \mathrm{~g}$
1-89. $(\pm \sqrt{5}, 0)$; See graph at right.
1-90. $y=0 ; x=0$
1-91. a: $x^{2}-1$
b: $2 x^{3}+4 x^{2}+2 x$

c: $x^{3}-2 x^{2}-x+2$
d: $y:(0,2) ; x:(1,0),(-1,0),(2,0)$

1-92. a:

b:

c: y-intercept $(0,3)$ for both, x-intercept $\left(-\frac{3}{2}, 0\right)$ for part (a) and none for part (b)
d: $(0,3)$ and $(2,7)$, solve $2 x+3=x^{2}+3$ to get $x=0$ or $x=2$
1-93. They are similar by AA \sim.
a: $\frac{n}{m}$
b: $\frac{m}{x}$

Lesson 1.2.2 Day 3

1-94. Mean: 52 g ; sample standard deviation is $\sqrt{\frac{64+64+4+14+4}{5-1}}=\sqrt{70} \approx 8.4 \mathrm{~g}$
1-95. a: $x=-6 \quad$ b: $x=\frac{38}{13} \approx 2.92$
1-96.
a: $\frac{1}{12}$
b: $\sqrt{580}=2 \sqrt{145} \approx 24.08$
c: $(-9,1)$
d: $y=\frac{1}{12} x+\frac{7}{4}$

1-97. See graph shown at right. Parabola with vertex/minimum $(-1,-8)$; increasing for $x>-1$; decreasing for $x<-1$; intercepts $(-3,0),(1,0)$, and $(0,-6)$. Line of symmetry at $x=-1$, domain: $-\infty<x<\infty$; range: $y \geq-8$

1-98. a: $\mathrm{D}:-3 \leq x<3$; R: $y=-2,1,3$
b: D: $x=2 ; \mathrm{R}:-\infty<y<\infty$
c: D: $x \geq-2 ; \mathrm{R}:-\infty<y<\infty$
1-99.
a: $\frac{1}{25}$
b: $\frac{x}{y^{2}}$
c: $\frac{1}{x^{2} y^{2}}$
d: $\frac{b^{10}}{a}$
$\mathbf{1 - 1 0 0}$. The independent variable is the volume of water; the dependent variable is the height of the liquid. The graph is three line segments starting at the origin. C is the steepest, and B is the least steep.

Lesson 1.2.3

1-103. a: The five-number summary is $(1,19.5,29,40.5,76)$ cups of coffee per hour.
b: The typical number of cups sold in an hour is 29 as determined by the median.
Looking at the shape of the distribution, we see that the median is a satisfactory representation of the distribution. The distribution has a skew. There is a gap between 60 and 70 cups. The IQR is 21 cups. 76 cups of coffee in one hour is an apparent outlier.

1-104. a: $x=\frac{-3 \pm \sqrt{21}}{2} \approx-3.79,0.79$
b: $x=\frac{7 \pm \sqrt{193}}{6} \approx 3.48,-1.15$
1-105. Diagrams vary.
See graph and table at right. $y=3 x$

x	y
1	3
2	6
3	9

1-106. See graph at right.
a: See graph at right.
b: $y=4 x-15$
c: $(4,1)$

1-107. a: D: all real numbers except $x \neq 0 ; \mathrm{R}$: all real numbers except $y \neq 0$
b: D: $-5 \leq x \leq 6 ; \mathrm{R}:-4 \leq y \leq 2$
c: D: all real numbers; $\mathrm{R}: y \leq 1$
$\mathbf{1 - 1 0 8}$. The negative coefficient causes parabolas to open downward, without changing the vertex. See graph at right.

1-109. $(1,3)$ and $(7,81)$

