Bridge - Products, Factors, and Factor Pairs
Name: \qquad
In mathematics, factors are numbers that create new numbers when they are multiplied. A number resulting from multiplication is called a product. In other words, since $2(3)=6,2$ and 3 are factors of 6 , while 6 is the product of 2 and 3 . Also, $1(6)=6$, so 1 and 6 are two more factors of 6 . Thus, the number 6 has four factors $1,2,3$, and 6 . In this lesson, you will use an extended multiplication table to discover some interesting patterns of numbers and their factors.

1-73.

Have you ever noticed how many patterns exist in a simple multiplication table? Such a table is a great tool for exploring products and their factors. Fill in the missing products, without the use of a calculator.

1-76.
Consider the number, 30 which could have been Ann's number in part (b) of problem 1-62.
a. Choose a color or design (such as circling or drawing an X) and mark every 36 that appears in the table.
b. Imagine that more rows and columns are added to the multiplication table until it is as big as your classroom floor. Would 36 appear more times in this larger table? If so, how many more times and where? If not, how can you be sure?
C. List all of the factor pairs of 36. (A factor pair is a pair of numbers that multiply to give a particular product. For example, 2 and 10 make up a factor pair of 20 , because $2 \cdot 10=20$.) How do the factor pairs of 36 relate to where it is found in the table? What does each factor pair tell you about the possible
 rectangular arrays for 36 ? How many factors does 36 have?

$$
\begin{aligned}
& \text { factor Pairs } 36: \\
& 1 \times 36 \text { (Army) } \\
& 2 \times 18 \\
& 3 \times 12 \\
& 11 \times 9 \\
& 6 \times 6
\end{aligned}
$$

factors of 36 :

$$
1,2,3,4,6,9,12,18,36
$$

Frequency is the number of times an item appears in a set of data. What does the frequency of a number in the multiplication table tell you about the rectangular arrays that are possible for that number?
a. Gloria noticed that the number 12 appears, as a product, 6 times in the table. She wonders, "Shouldn't there be 6 different rectangular arrays for 12 ?" What do you think? Work with your team to draw all of the different rectangular arrays for 12 . Explain how they relate to the table. L

b. How many different rectangular arrays \& be drawn to represent the number 48? How many times would 48 appear as a product in a table as big as the classroom? Is there a relationship between these answers?

c. In problem 1-76 how many different rectangular arrays could be drawn to represent the number 36 ? How many times did it appear as a product in a table as big as the room?

Does the pattern you noticed for 12 and 48 apply to 36 ? If so, why does this make sense? If not, why is 36 different?

1-78.

PRIME FACTORIZATION

8×25

200×1

factors of $200: 1,2,4,5,8,10,20,25,40,50,1(x), 200$

a_What are all the factors of 200 ?
$11 \times 5010 \times 205 \times 40100 \times 2$
b. A prime factor is a factor that is also a prime number. What are the prime factors of 200 ?

c. Writing a number as a product of only prime numbers is called prime factorization. Tatiana was writing 200 as a product of prime numbers. She shared with her team the beginning of her work, which is shown at right.

Notice that Tatiana uses a "dot" (\cdot) to represent multiplication. This is $\mathbf{2 0 0}=2 \cdot 2 \cdot \widehat{5}_{2 \cdot 5}$ a way to show multiplication without using an " x ". Try to use this method now so that when you learn algebra, you are not confused about the use of the letter x as a variable. What process do you think was going through Tatiana's mind when she wrote 200 as a product of prime factors?

Bridge - Products, Factors, and Factor Pairs
Name: \qquad
d. Do you think it matters what products Tatiana wrote in her second step? What if she wrote 10.20 instead? Finish this prime factorization using Tatiana's process.

$$
\begin{array}{cc}
& 200 \\
=10 \cdot 20 \\
=5 \cdot 2 \cdot 5 \cdot 4 & \\
=5 \cdot 2 \cdot 5 \cdot 2 \cdot 2 & \\
& =5 \cdot 2 \cdot 20 \\
& =5 \cdot 2 \cdot 2 \cdot 5 \cdot 2
\end{array}
$$

1-79. Prime Factorization
Write the prime factorization of each of the numbers below.

$$
\begin{array}{rlr}
& 100 & =6 \cdot 6 \\
=50 \cdot 2 & =2 \cdot 3 \cdot 2 \cdot 3 \\
= & 25 \cdot 2 \cdot 2 & \\
= & 5 \cdot 5 \cdot 2 \cdot 2 &
\end{array}
$$

c. 54
d. 600
b. To make it easier to record prime factors, you can use exponents.

Do you remember how repeated addition can be written in shorter form using multiplication? For example, $10+10+10+10+10$ can be written as $5 \cdot 10$. Similarly, repeated multiplication can be written in shorter form using exponents: $10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=1 \times 10^{5}$
The prime factorization of 200 from problem $1-78$ was $2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$. How could you write this with exponents?

$$
200=2^{3} \cdot 5^{2} .
$$

c. Write your answers from problem 1-79 in exponent form.

$$
\begin{array}{ll}
\text { (a)) } 100 & =5 \cdot 2 \\
=50 \cdot 2 \\
=25 \cdot 2 \cdot 2 & =2 \cdot 3 \cdot 2 \cdot 3 \\
=5 \cdot 5 \cdot 2 \cdot 2 & =2^{2} \cdot 3^{2} \\
=5^{2} \cdot 2^{2} &
\end{array}
$$

